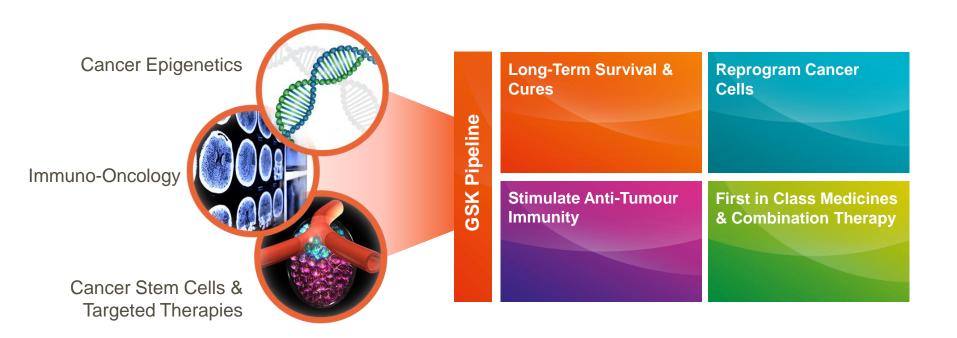
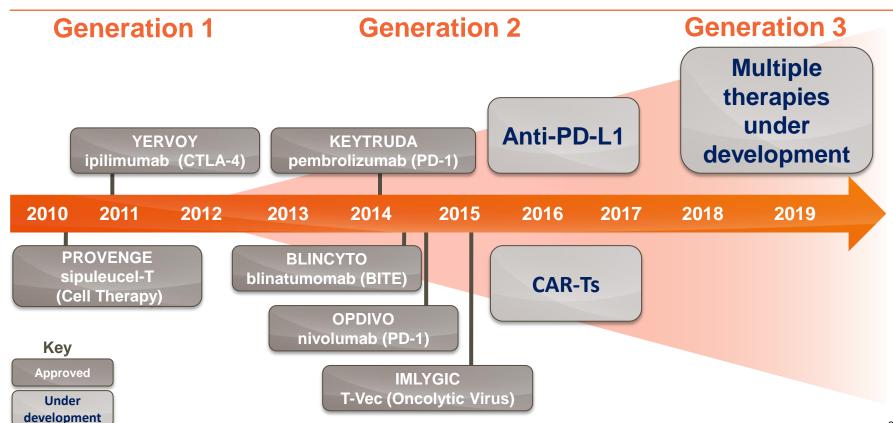


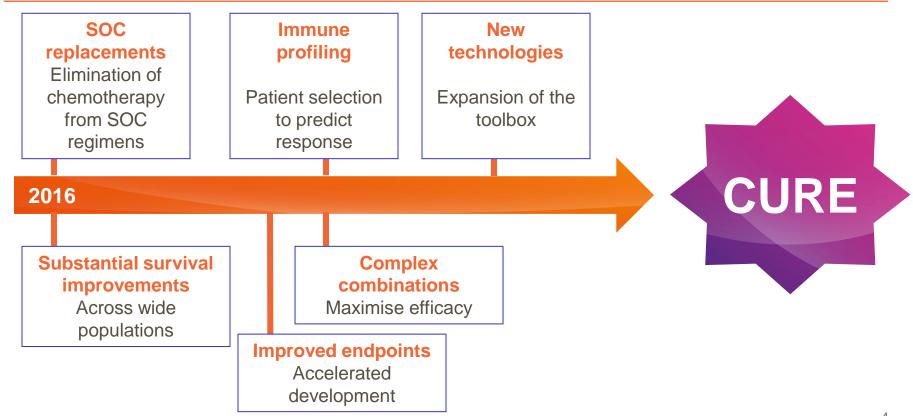
Immuno-Oncology


Axel Hoos, MD, PhD Senior Vice President, Oncology R&D

February 24, 2016

Oncology R&D strategy

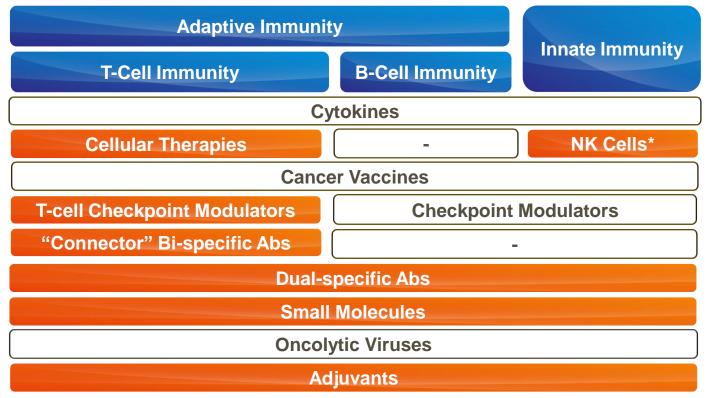

Focusing on 3 areas fundamental to oncology


3 Generations of therapies

Main trends

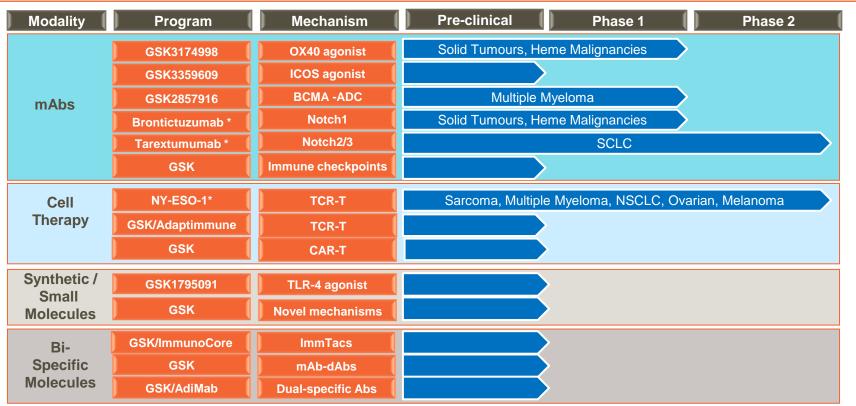
3rd Generation opportunities

Spectrum of immuno-oncology modalities



Adaptive Immunity		
T-Cell Immunity	B-Cell Immunity	Innate Immunity
Cytokines		
Cellular Therapies	-	NK Cells
Cancer Vaccines		
T-cell Checkpoint Modulators	Checkpoint	Modulators
"Connector" Bi-specific Abs	-	
Dual-specific Abs		
Small Molecules		
Oncolytic Viruses		
Adjuvants		

3rd Generation opportunities


gsk

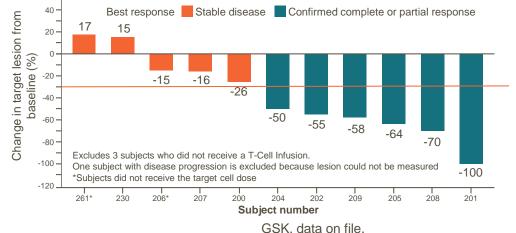
GSK's multi-modality pipeline

3rd Generation leadership

Innovation across novel targets, modalities and combinations (5 in the clinic)

NY-ESO T-Cell Therapy

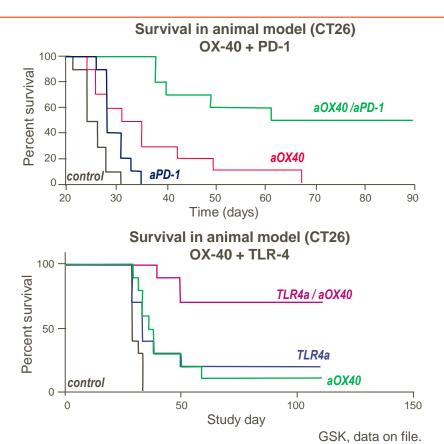
8


- TCR T-cell therapy
- 50% ORR seen in sarcoma
- Ongoing studies in ovarian and other solid tumours and haematological malignancies
- Planned studies in combination with checkpoint modulators
- Collaboration with Adaptimmune

Status:	Phase I/II
Indications:	NY-ESO-1 positive Cancers:
	Sarcoma, Myeloma, NSCLC,
	Melanoma, Ovarian Cancer
Filing strateg	ly to be agreed with Adaptimmune

Note: GSK3377794 subject to exercise of option by GSK

Sarcoma Phase I/II: Individual patient complete response (CR)



GSK3174998 OX40 agonist mAb

- GSK3174998 is one of four humanised OX-40s in clinic
- Dual mechanism: enhancing effector T-cell and suppressing T-regs
- Phase I Study started in eight cancers
- Combination with Merck PD1 in 2016
- Combination with GSK TLR4 in 2017
- Collaboration with MD Anderson

Planned Filing: 2020	Status: Indications: Planned Filing:	Phase I Solid tumours, Heme Malignancies 2020
----------------------	--	---

9

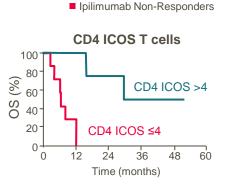
GSK3359609 first-in-class ICOS agonist antibody

- Universal mechanism across multiple cancers
- Patient selection biomarker
- Enhances T-cells associated with survival
- Use after CTLA-4 and PD-1 in unresponsive or refractory patients
- Possible anchor for use in combinations
- Collaboration with INSERM

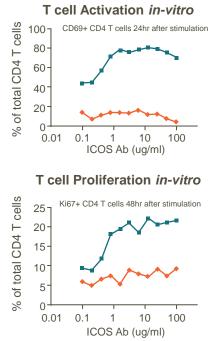
Status:	Phase I start Q1 2016
Indications:	Solid tumours, Heme Malignancies
Planned Filing:	2020

W7

W12


Ipilimumab Responders

W24


Ω

Baseline

ICOS in ipilimumab-treated patients

GSK3359609

DiGiacomo, Clin Immunol Immunother 2013

GSK2857916 BCMA-ADC

Bone Marrow Dissemination Model (SCID Mice)

В Α Tumor growth Survival 1.00E+10 Antibody Drug Conjugate (ADC) 100 survival p<0.0001 Log[BLI] Log (ph/s/cm²/sr) 1.00E+09 with MMAF (auristatin derivative) 75 1.00E+08 ercent 50 High-expression target in 1.00E+07 ň 25 1.00E+06 1.00E+05 100 25 50 75 125 1 6 13 19 2634 48 55 64 71 **Days Post Tumor Injection** Treatment (days) Weight Immunogenic cell death inducer -J6M0-mcMMAF(4 mg/kg) J6M0-mcMMAF(4mg/kg) Real Proventies - J6M0(4mg/kg) J6M0(4mg/kg) 30 20 H 18 --- iso-mcMMAF(4 mg/kg) iso-mcMMAF(4ma/ka) 16 vehicle vehicle 14 12 p=0.0002 for J6M0 vs. vehicle (iso-mcMMAF); 6 13 19 26 34 48 55 64 71 84 93 102 MM1S Treatment (days) p=0.0004 for J6M0 vs. J6M0-mcMMAF

Tai et al, Blood (2014), 123(20):3128-38

Strong pre-clinical activity

multiple myeloma

ADCC enhanced

B Cell Maturation Antigen

High potential for combinations

Status:	Phase I
Indications:	Multiple Myeloma
Planned Filing:	Data dependent (post 2020)

Immuno-Oncology at GSK

Mission: Maximise patient survival Achieve a long-term leadership position in Oncology

Scientific Focus

- Optimise T-cell Immunity Rationale: has delivered transformational medicines
- Synergies and transformational effects through combinations

Tactics

- Diversified pipeline
- Across key modalities
- Innovation
 - 3rd generation targets, modalities & combinations
- Build world-class discovery and development team
- Fully-integrated programs from early discovery through licensure
- Partnerships
 - Best science
 - Access to combinations

Long-term leadership position
in Oncology

Goals

Transformational effects for

Maximise survival

Pipeline sustainability

patients

